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The paper presents the main results on intertemporal optimality with discounting 
in a closed linear model of production, including the price characterization of 
optimal programs, the existence of a steady-state optimal program, and a turnpike 
property of optimal programs from arbitrary initial stocks. Some of these results are 
used to provide a characterization of the optimality of competitive programs in 
terms of a “decentralizable” condition. Journal of Economic Literature Classification 
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1. INTRODUCTION 

The purpose of this paper is twofold. First, it tries to present the main 
results on intertemporal optimality of infinite horizon programs in a simple 
closed linear model of production. Second, it presents results on the 
characterization of the optimality of competitive programs in terms of a 
“decentralizable” condition (Theorems 1 and 2, Section 5). 

Regarding the first aspect, we note that the results that we present are 
more or less well-known in the literature, particularly in the papers by 
McFadden [S] and Atsumi [l]. Our purpose is to present a systematic 
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treatment in the context of a simple closed linear model, so that the main 
results are highlighted, while the additional complications which arise in 
more general models are avoided. These considerations dictate the choice 
of our production framework given by the simple linear model presented in 
Gale [S] and the preference framework given by iso-elastic utility functions 
as in Atsumi [ 11. 

After discussing a von Neumann equilibrium in Section 3, we present the 
main results on optimal programs in Section 4. We first establish the 
existence of optimal programs using the existence criterion of Atsumi [l] 
and Brock and Gale [2]. We then present a “price characterization” of 
optimal programs: a feasible program is shown to be optimal if and only if 
it is competitive and it satisfies the transversality condition that the value 
of input stocks converges to zero. The necessity side of this result is con- 
tained in McFadden [S]. However, given our simple framework, we give 
an alternative proof, which exploits heavily the characteriation of efficient 
programs provided by Majumdar [9] and uses only the finite-dimensional 
separation theorem. Next, we obtain a result on the existence of a steady- 
state optimal program, that is, a program along which all outputs grow at 
a constant growth factor, and which is optimal in the usual sense. The line 
of argument used is essentially constructive, following Atsumi [ 11, but dif- 
ferentiability assumptions are not used on the welfare function. Finally, we 
use all of the above results to provide a “turnpike theorem” for optimal 
programs. That is, output produced along an optimal program is shown to 
be (a) of the same “composition” asymptotically as the steady-state optimal 
program and (b) growing at the same growth factor asymptotically as the 
steady-state optimal program. 

Regarding the second aspect, we note that the problem here is to charac- 
terize the optimality of competitive programs in terms of a condition which 
can be verified under a decentralized system. A detailed discussion of and 
motivation for this problem can be found in Brock and Majumdar [3]. It 
suffices for our purpose to note that we want to replace the transversality 
condition in the price characterization results of Section 4 by a period-by- 
period condition, which involves for any given period the prices and quan- 
tities of the given competitive program and of the steady-state program for 
that period. We find that the condition used by Brock and Majum- 
dar [3]-namely, that the scalar product of the price difference and the 
quantity difference be non-positive at each date-works for the closed 
linear model as well, but with one important qualification. The steady-state 
optimal stock is determined only up to positive scalar multiplication. If we 
fix the steady-state optimal stock (by suitable normalization), we must 
agree to compare it with competitive programs starting only from a certain 
set of initial stocks (the set being dependent on the choice of the steady- 
state optimal stock). The line of proof of the characterization result 
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suggests that without this qualification, it is to be expected that the result 
(Theorem 1) would fail. We confirm this by studying a concrete example in 
the one-good version of our linear model (see Example 1, Section 5). 

Proofs of our results are discussed only in Section 6. 

2. PRELIMINARIES 

2a. Notation 

Let R” be an n-dimensional real space. For x, y in R”, x > y means 
xi 2 y, for i = 1, . . . . n; x>y means x>y and x#y; x8y means Xi>yi for 
i= 1 , . . . . n. We denote the set {x in R”: x 3 0) by R”, , and the set {x in 
R”:x%O) by R=+. 

We use the sum-norm on R”; that is, the norm on R” (denoted by (1. II ) is 
defined by 

IIXII = f IXil for all x in R”. 
i=l 

The vector (1, 1, . . . . 1) in R” is denoted by e. The ith unit vector in R” is 
denoted by ei, i.e., ej = 0 for i #j and ej = 1; i = 1, . . . . n, j = 1, . . . . n. For any z 
in R”, we denote mini zi by m(z) and max, zi by M(z). 

Let A be an n x n real matrix. The generic element of A is denoted by ao, 
i = 1, . . . . n and j= 1, . . . . n. The matrix, A, is called non-negative, and written 
as A > 0, if a, 2 0 for i = 1, . . . . n and j = 1, . . . . n. It is called positive, and 
written as A > 0, if A > 0 and A is not the null matrix. It is called strictly 
positive, and written as A 9 0, if au > 0 for i = 1, .,., n and j = 1, . . . . n. 

2b. The Model 

Consider an economy described by (a, w, 6) where a, a subset of 
R”, x R”, , is the technology set, w: R”, --+ R is a welfare function, and 6 is a 
discount factor, satisfying 0 < 6 < 1. 

We consider the technology to be of a simple polyhedral type, as 
specified in Gale [ 51, 

!Z!={(x,~)in R”,xR”,:Ay<x}, 

where A is an n x n real matrix, satisfying 

(A.l) A is strictly positive; that is, av > 0 for i = 1, . . . . n and j= 1, . . . . n. 

(A.2) A is productive; that is, there is y” in R”, such that 

Aye -@ y”. 
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Assumption (A.l) can be weakened somewhat using the theory of 
“primitive” matrices as discussed in Nikaido [IO, pp. 108-1141. 
Assumption (A.2) is equivalent to the Hawkins-Simon condition (Nikaido 
Cl& p. 901). 

Following Atsumi [ 11, we assume that the welfare function is of an iso- 
elastic type: 

(A.3) w(c)=[f(c)]‘-‘for c in R”, where O<a<l, andf:R”,+R+ 
satisfies the following restrictions: 

(a) f is concave and continuous on R”, . 

(b) f is homogeneous of degree one. 

(c) f(c’)>f(c) when c’>c;f(c’)>f(c) if c’>c andf(c)>O. 

(d) f(c)>0 for ~$0. 

Remark 1. w(c) 2 0 for c in R”, , since f(c) 2 0 for c in R”, . Further- 
more, from (A.3) (a) and (b) it follows that f (0) = 0. Hence, w(0) = 0. 

A program from 4; in R”, is a sequence (x(t), y(t)), such that y(0) = j, 
0 <x(r) <y(t), and (x(t), y(t + 1)) is in Q for t > 0. Associated with a 
program (x(t), y(t)) is a consumption sequence (c(t)) given by 

c(t)=y(t)-X(f) for f > 0. 

A program (x(t), y(t)) from j is a steady-state program if j > 0 and there 
is a real number, g > 0, such that 

y(l+ l)=sv(t) for t30. 

A program (x*(t), y*(t)) from .C is an optimal program if 

f s’w(c*(t))> f cYw(c(t)) 
r=O /=O 

for all programs (x(t), y(t)) from j. A program (x(t), y(t)) from j is a 
steady-state optimal program if it is a steady-state program and it is an 
optimal program from j. If there is a steady-state optimal program from j7, 
we call j a steady-state optimal stock. 

A competitive program is a sequence (x(t), y(t), p(t) ), such that 

(1) <x(t), y(r) > is a program; 
(2) p(t) is in R”, for t>O; 

(3) s’w(c(t)) -p(t) c(t) 2 6’w(c) -p(t) c forallcin R”,, t>,O (2.1) 

p(r+ l)Y(lf- 1)-pft)xft)2p(r+ I)y-p(t)x 
for all (x, y) in Q, t 3 0. (2.2) 
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A competitive program (x(t), y(t), p(t)) is said to satisfy the transuer- 
sality condition if 

lim p(t) x(t) = 0. (2.3) ,-Co 

A program (Z(t), y(t)) from p is called inefficient if there is a program 
(x(t), y(t)) from 9, such that c(t) > E(t) for all t > 0, and c(t) > F(t) for 
some t > 0. It is called efficient if it is not inefficient. 

An obvious property of an efficient program (x(t), y(t)) is that for t 3 0, 
x(t)=Ay(t+ 1). 

A useful characterization of the set of (feasible) programs and the set of 
efficient programs is provided in Theorem 4.1 of Majumdar [9]. We state 
it here for ready reference. 

Result 1. Zf (x(t), y(t)) is a program from 3 then C~zO=oAfc(t)<j. 
Conversely, if c(t) is in R: for t 3 0, and jj is in R”, , and C,“=O A%(t) < j, 
then there is a program (x’(t), y’(t)) from jj, with c’(t) = c(t) for t 2 0. 
A program (x(t), y(t)) from p is efficient if and only if C,“=oA’c(t)=j. 

Note that the statement of Result 1 is somewhat stronger than that of 
Theorem 4.1 in Majumdar [9]. A careful reading of Majumdar’s proof 
shows that the stronger statement is fully warranted. We state the result in 
this stronger form, because we find it most convenient to use it in this form. 

Before we proceed to the substantive issues of the following sections, we 
must establish a preliminary result; viz., an optimal program from strictly 
positive initial stocks is efficient. This would be obvious if the welfare 
function was increasing in each component; this need not be the case “at 
the boundary” in our framework, and it would not be the case whenfis of 
the Cobb-Douglas type. 

Result 2. If (X(t), j(t)) is an optimal program from J in R”, + , then 
(Z(t), j(t)) is an efficient program from jj. 

We shall also need the following well-known properties of “supporting 
prices” in the simple linear production model. 

Result 3. Suppose (x0, y”) is in Q, (p”, q”) is in R”, x R”, , and 
q”yo -pox0 2 q”y -pox for all (x, y) in L?. Then the following hold: 

(i) q”yo - pox0 = 0. 

(ii) qO-p”A GO. 

(iii) If y”$O then qO=poA. 

(iv) If ~‘$0 then AJJ’ =x0. 
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3. A VON NEUMANN EQUILIBRIUM 

For any (x,y)in Q with x>O, let IZ(x,y)=max (L:y>Ix). It is known 
(see, for example, Karlin [7, p. 3393) that there is (a, j) in 52 (with 2 > 0), 
1>0, and a price vector j?>O such that 

(i) K=L(.?,y),y=Ri 

(ii) I> 1(x, y) for all (x, y) in Q with x> 0 

(iii) by 6 &jx for all (x, y) in Q. 

We refer to 2 as a vector of van Neumann stocks, 1 as the van Neumann 
growth factor, and fi as a van Neumann price. We refer to (a, y, 1, fi) as a 
van Neumann equilibrium. 

We now relate 1 to the Frobenius eigenvalue of A and J?, jj to the 
Frobenius eigenvectors of A. 

Since i > 0, I> 0, and y = la, so y > 0. Since (a, 9) is in Q, so JX? > Aj; 
and since y > 0, while A $0, so we have .C % 0. Since j = I.?-, so j 9 0. From 
(i) and (iii), we have 

~j-/l~i=O~~y-~~x for all (x, y) in 0. (3.1) 

Since y B 0, therefore, by Result 3(iii) we have 

b=@A, that is (since ,i > 0), 

(l/&=fiA. (3.2) 

Thus, (l/j) is an eigenvalue of A, and fi a corresponding eigenvector. Since 
6 > 0, so fi is the (left-hand) Frebenius eigenvector of A, and (l/j) is the 
(simple) Frobenius eigenvalue of A (Gantmacher [6, p. 631). 

Since fi > 0, and A $0, so (3.2) implies that fi B 0. Therefore, by Result 
3(iv) we get i= AC, so that we get 

(l/&$=Aj. (3.3) 

Since j > 0, so j is the right-hand Frobenius eigenvector of A (Gantmacher 
CC P. 631). 

In what follows, we normalize 3, so that 11 9 11 = 1. We then normalize fi, so 
that $j= 1. 

We note that since A is productive, [see (A.2) above], there is y” such 
that (Ay’, y”) is in Q, with y” > 0, and Aye @y”. Thus, ,I(Ay’, y”) > 1, so 
that 13 I1(Ay”, y”) > 1. 
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4. OPTIMALITY 

This section summarizes the main results on optimal growth with dis- 
counting in the closed linear model of production. 

We start by providing a sufficient condition for the existence of an 
optimal program in our framework. This condition is then maintained for 
the rest of the discussion. The condition is 

(A.4) 61” --I’ < 1. 

Discussions of the interpretation of (A.4) are available in Brock and 
Gale [2] and McFadden [8]. Our existence result can be stated as follows. 

PROPOSITION 1. Gioen an initial stock j in R”, , if (x(t), y(t)) is any 
program from j, then 

f G’w(c(t)) < co. 

Furthermore, there is an optimal program (x*(t), y*(t)) from j. 

In view of the existence result above, we can define a oalue function, 
v: R”, + R, by 

‘x: 
V(y)= c s’w(c*(t)) for y in R”+, 

t=0 

where (x*(t), y*(t)) is an optimal program from y. 
If (x*(t), y*(t)) is an optimal program from j in R”, , then the 

“principle of optimality” states that for N 3 0, 

v(y*(o))= 2 is’w(c*(t))+~N+‘V(y*(N+ 1)). 
I==0 

The proof of this principle is too well-known to be reproduced here in 
detail. 

We now note the main results on the price characterization of optimal 
programs. A competitive program is optimal if it satisfies the transversality 
condition that the value of input stocks converges to zero (at least for a 
subsequence of periods). 

PROPOSITION 2. Suppose (X(t), j(t), p(t)) is a competitive program 
from j in R”, , and 

liminfp(t)%(t)=O 
t-m 

then (X(t), j(t) ) is an optimal program from I;. 
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Conversely, an optimal program is competitive and satisfies the transver- 
sality condition that the value of input stocks coverges to zero. 

PROPOSITION 3. Suppose (X(t), j(t)) is an optimal program from j in 

R:+- Then, there is a sequence (p(t)) such that (X(t), y(t), jj( t)) is a com- 
petitive program, p(t) > 0 for t 2 0, and 

lim p(t) X(t) = 0. 
, - cz 

Remark 2. Our proof of Proposition 3 exploits the simple structure of 
the production model. It essentially uses the method of Weitzman [ 111, of 
obtaining a “price support” for the value function in the initial period, but 
avoids the induction argument for obtaining the “supporting prices” in the 
subsequent periods for the technology and the value function, by exploiting 
the structure of the simple polyhedral model. For a more general linear 
model, a similar result can be proved, following the method of McFadden 
[S, Theorem 5, pp. 47-481. 

It is worth noting that the “prices” (p(t)) in Proposition 3 also support 
the value function at j(t). 

PROPOSITION 4. Suppose (X(t), p(t), p(t)) is a competitive program 
from j in R”, andlim,,,p(t).?(t)=O. Then 

~WY)) -F(t) j(t) 2 J’UY) -D(t) Y foraIlyinR”,,t>O. 

COROLLARY. Suppose <X(t), j(t)> is an optimal program from J in 

C+. Then, there is a sequence (p(t)), such that (R(t), F(t), P(t)) is a 
competitive program, and 

6) lim,,, p(t) x(t) = 0 

(ii) G’V(j(t))-p(t)j(t)2G’V(y)-p(t)yfor ally in R”,, 120. 

Next, we turn to a result on the existence of a steady-state optimal 
program. We show the existence of a stock y*, such that the program from 
y* along which stocks grow at the growth factor 

[that is, along which y*(t) =g’y* for t 201 is optimal among all programs 
from y*. 

PROPOSITION 5. There exists y* $0, such that y*(t)=g’y*, x*(t)= 
Ay*(t + 1) for t > 0 defines a steady-state optimal program from y*, where 

64214512.6 
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Remark 3. If we define for 2 > 0, < x(t), y(t), p(t) > by [x(t), y(t), 
p(t)] = [lx*(t), ;ly*(t), ,V’p*(t)] for t30, then it follows that (x(t), y(t), 
p(t)) is competitive, and lim,,, p(t) x(t)=lim,,, L’-OL~*(r)x*(t)=O. 
Therefore, by Proposition 2, (x(t), y(t)) is optimal. Clearly it is also a 
steady-state program. Hence (x(t), y(t)) is a steady-state optimal 
program. [More generally, it is easily seen by a similar argument that if 
(i(t), j(t)) is an optimal program from y, then for any A> 0, (E(t), 
Aj( t)) is an optimal program from Lj.1 

The significance of the steady-state optimal program (of Proposition 5) 
for optimal programs in general is best conveyed through a turnpike 
property of optimal programs. To establish this, we need to strengthen our 
assumptions on the welfare function. If c and c’ are in R” then by “c is 
proportional to et,” we mean that there is a real number p #O such that 
c = pc’; otherwise, c is not proportional to c’. We now assume, in addition 
to (A. 1 )-( A.4), the following property. 

(AS) If c, c’ are in R”, , c is not proportional to c’ and f (c) > 0 <f (c’), 
then,forO<8<1,f(&+(1-8)c’)>0f(c)+(l-f3)f(c’). 

PROPOSITION 6. Suppose (X(t), j(t)) is an optimal program from 
j b 0. Then, there is a positive real number p, such that (i) (x’(t), y’(t)) = 
g’,u(gAy*, y*) for t 2 0 defines a steady-state optimal program from py*; 
(ii) lim,, 3. [ j(t)/g’] = ,uy* [where y* 9 0 is the steady-state optimal stock 
and g is the steady-state growth factor obtained in Proposition 51. 

The above turnpike result implies two things about the behavior of 
stocks along an optimal program (x(t), jj( t) ). First, the composition of the 
stocks, [ y(t)/11 y(t)jl], converges to the composition of the steady-state 
optimal stock, [y*/II y* 111. Second, the growth factor of the stocks 
[II y(t + 1)11/11 y(t)/11 converges to the growth factor of the steady-state 
optimal program, g. 

Since for the optimal program (x(t), j(t) ) we will have X(t) = Aj( t + 1 ), 
so it follows trivially from Proposition 6 that 

[*(c)/g’] + px*(O) as t -+ cc (where x*(O) =gAy*) 

and 
[E(t)/g’] + PC*(O) as t + co, 

where c*(O) is defined as [y* -x*(O)]. 

5. DECENTRALIZATION 

In this section, we show that optimality of competitive programs can be 
characterized in terms of the simple decentralizable rule of Brock-Majum- 
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dar [3]. However, there is one important qualification. There is a potential 
choice of the steady-state optimal program (i.e., a choice regarding the 
appropriate positive scalar multiple) in terms of which the decentralizable 
rule C(5.1) below] is to be stated. The necessity side of the characterization 
result (Theorem 2) and Remark 5 show that, for an optimal program from 
any ji in R”, f the decentralizable rule (5.1) is satisfied for every steady-state 
optimal program. Conversely, (as Theorem 1 shows) if (X(t), y(t), p(t)) is 
a competitive program and the decentralizable rule (5.1) is satisfied with 
respect to every steady-state optimal program (x*(t), y*(t)) then (X(r), 
J(t)) is an optimal program. However, this requires verification of the rule, 
in principle, in infinitely many cases (corresponding to the inlinitely many 
steady-state optimal programs). It is obviously of interest to state the rule 
in terms of one particular steady-state optimal program. A plausible conjec- 
ture may be that the rule could be stated in terms of any one of the steady- 
state optimal programs; in other words, if the rule is satisfied for some 
steady-state optimal program then (given competitiveness) the program is 
optimal. If this were true then this would be the simplest possible way to 
state the rule. In the course of the proof of Theorem 1, i.e., in the course of 
showing that, if a competitive program is not optimal then there is a 
steady-state program for which (5.1) is violated, it becomes clear, however, 
that the steady-state program cannot be arbitrarily chosen. This is con- 
firmed by the example following Theorem 2. It is necessary, therefore, to 
choose an appropriate steady-state optimal program (given the competitive 
program), in terms of which, if the decentralizable rule is stated, it signals 
optimality. Equivalently, given any particular steady-state optimal 
program, one can define a set of initial stocks (the set Y below), for which 
the decentralizable rule (for competitive programs from such initial stocks), 
in terms of the given steady-state program, does signal optimality. We 
follow this latter approach in Theorem 1. 

Denote P$/Pc* by E. Since c* > 0 and P $0, E is well defined, and since 
9 9 0, E > 0. Next, define q = [m(g)/E I/ c* II], and denote 

e = [q/( r/ + 1 )] CiiX(i - 2)‘. 

Since 9 >> 0, we have, q > 0 and 0 < 8 < 1. Now we define a set of initial 
stocks for which the exercise will be carried out: 

Y={yinR”,:PMv=@c*}. 

THEOREM 1. Suppose (Z(t), p(t), p(r)) is a competitive program from 9 
in Y. Suppose, for t 2 0, 

L-P(l)-P*(t)lL?(t)-Y*(t)l GO (5.1) 

then (Z(t), j(t)) is optimal from 9. 
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Remark 4. Inspecting the rule (5.1), it appears that besides information 
regarding the “current” commodity prices measured in terms of current 
utility units [(l/6’) p(t)], the output at time t along the competitive 
program, [y(t)], and ~7 and y*, it is also necessary to know the value of t 
[for computing y*(t)] in order to be able to verify (5.1). This is an 
awkward requirement, since the period which is regarded as the origin of 
measurement of time should not be of any significance and would be an 
odd information requirement from the point of view of agents at time t. It 
would seem to be desirable that the rule be in a form where, the infor- 
mation required for its verification is the current prices and current quan- 
tities along the competitive program and the information regarding the 
normalized steady-state compositions, viz., $, c* and y*, and a. 

If (p(t)) is a sequence of present value prices, let (q(t)), defined by 
q(t) E (l/#)p(t), be the corresponding sequence of current prices. Suppose 
that we have the current price and quantity information along a 
competitive program (X(t), j(t), p(t)), viz., X(t), j(t), and q(t). We 
wish to select q(t) and J(t) for verification of the rule (5.1), rewritten as 
[g(t)--ij(t)][j(t)-j(t)]<0 for t20. We want this selection to correspond 
to an optimal steady-state program, which, if used in the verification of (5.1) 
(in the form just stated), does signal optimality for the given competitive 
program. Define y(t) = +4(t) J;. Now q(t) p = (l/S’) p( t) jJ > 0, since p(t) > 0; 
hence, y(t)>O. Denote (l/y(t)““) by P(t) and define c”(t)=/?(t) c*, 
j(t) = B(t) y*, .Z( t) = p(t) x* (where x * =gAy*), G(t) = y(t)ji Then it can 
be shown that (Z(t), j(t)) is an optimal steady-state program with 
associated present value prices d(t) = S’q( t). Furthermore, it can be checked 
(essentially by following the method used to prove Theorem 1) that if 

then (f(t), j(t)) is an optimal program from jj. 
The above approach, namely that of choosing the appropriate steady- 

state program, given the competitive program, is equivalent to the 
approach of Theorem 1. It should be emphasized that, in defining the 
steady-state values in period t, the value of t was not used. Finally, it may 
also be remarked that, denoting v(t) = [p(t)-p*(t)][j(t) -y*(t)] for 
t20, it can be checked that v(t+ 1)-v(t)>0 for all t>O along a com- 
petitive program. Hence, the proof of Theorem 1 actually shows that, if the 
given competitive program is not optimal, then v(t) > 0 for all but finitely 
many periods. 

A converse of the result of Theorem 1 can now be noted. 

THEOREM 2. Suppose (X(t), j(t)) is an optimal program from 3 in Y 
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and .V B 0. Then, there is a sequence ( p( t ) ) such that (X(t), j(t), p(t) ) is a 
competitive program, and for t 2 0 

Remark 5. We note that the fact that p is in Y is of no significance in 
Theorem 2; the result is true without this restriction. However, it is 
extremely significant in Theorem 1 where the result is not necessarily true 
without this restriction. We justify this last statement now with an example. 

EXAMPLE 1. Let us consider a one-good example, in which Q = {(x, y) 
in R+xR + : x>uy}. Here 0 <a < 1 ensures that (A.l) and (A.2) are 
satisfied. The welfare function is w(c) = c1 ~’ (where 0 < a < 1) for c in R + ; 
this ensures that (A.3) is satisfied. The discount factor is 0 < 6 < 1. 

It is easy to check that j = 1, i = a, I= (l/u), J? = 1 is a von Neumann 
equilibrium, satisfying our stipulated normalizeation of p and fi. Assuming 
6 < u1 - ’ ensures that (A.4) is, satisfied. For the sake of concreteness, choose 
a=(&), a=& 6~$, so that 1.=4=(1/a), and ~‘~“=($)“~=~>$=6. 

Define g=(6A)“*=l, ~*=(l-a)~‘~=$, y*=c*(l-gu)-‘=f. Note 
then that (x*(t), y*(t)) defined by y*(t)=& x*(t)=& for t30 is a 
steady-state program from y* = f. Also, (x*(r), y*(r), p*(t)) is a com- 
petitive program, where p*(t) = $ for t 3 0, and p*(t) y*(t) + 0 as t + co. 
So (.x*(t), y*(r)) is an optimal steady-state program. 

Next, let J > 0, and define (X( t ), jj( t) ) by j(t) = J( 1’ + g’)/2 = J(4’ + 1)/2 
for t b 0, X(t) = jj( t + 1 )/R = j( t + 1)/4 for t >, 0. Then, C(t) = j( f) - 
Qq;+ 1)/A] = [.@-+$‘)/2]- [j@+‘+g’+i)/2K] = (j72fi)[Pf’+~gg’- 
A -g’+‘] =(j/2A)(~--g)g’=$!y for t>O. Define (p(t)) as follows: 
J?(Z) = S’( 1 - a)[T(t)] pa = +(8/3jj)“‘/4’ for t 3 0. One can check that (X(t), 
.v( t), p(t)) is a competitive program. Clearly p(t) y(t) --) (8/3jj)“2 (J/4) as 
t + co, and [since (p( t’j) are the unique competitive prices] (x(t), jj( t)) 
is not an optimal program from jj. 

Now, if we choose p = 1, then P(t) = (3)“*/4’< 1/4’=p*(t) for t 2 0. 
Also, Y(t) = (4’+ 1)/2 > f = y*(r) for t > 0. So, for t > 0, 

but, as we have already noted, (x(t), J(t)) is not optimal from j = 1. Thus, 
the above rule fails to signal the non-optimality of the competitive 
program, (x(t), J(f), p(f) >. 

The problem is, as we have mentioned earlier in the discussion, that the 
initial stock y was not chosen careiully enough, given the comparison 
steady-state program. In this example, E= 4, q = 1, 8 = (4)” = &, and 
Y={y:y=&). Now, if jj is chosen in Y, that is j=&, then 
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p(t)=(y)“2/4’ for t>O, so that D(t)>p*(t) for ta0. Also, 
f(t)= (4’+ 1)/128>f=y*(t) for t>3. So, for ta3, 

CAtI -P*(f)lC.?(f) -v*(f)1 >o 

and the above rule signals the non-optimality of the competitive program 
<x(t), f(f), D(l) >. 

We note that the definition of the initial stocks (the set Y), given the 
steady state, does not completely characterize the set of initial stocks for 
which the decentralizable rule works (given the steady state). The proof of 
Theorem 1 makes it clear that the essential restriction on the initial stock is 
that all competitive programs starting from it must satisfy the following 
inequality: 

P(o)P>a.F. (5.2) 

Initial stocks which are “slightly” larger than those included in the 
definition of Y may satisfy this. If j = 1, p(0) p = ($)‘I2 < 1 =$J?, so that 
inequality (5.2) is violated. If j is chosen to be 3 then p(0) j = 1 = $j, this 
being the borderline case where (5.2) is still violated. Here 
p(t)= 1/4’=p*(t). Hence [p(t)--p*(t)][j(t)-y*(t)]=0 for t30 so that 
the rule (5.1) still fails to signal non-optimality of (Z(t), y(t)). If j < 3, then 
(5.2) is satisfied and [p(t)-p*(t)] >O for t>O. It is clear from the 
definition’ of j(t) that so long as j > 0, j(t) -y*(t) > 0 for t sufficiently 
large and hence (5.1) is violated for t sufficiently large; that is, (5.1) does 
signal non-optimality. The above discussion illustrates that the critical con- 
sideration in the the choice of j (that is, in the definition of Y) is that all 
competitive programs emanating from any j in Y must satisfy (5.2). 

6. PROOFS 

In this section, we provide the proofs of the main results in Sections 2-5 
For the detailed proofs of all the results, the reader is referred to the 
working paper by Dasgupta and Mitra [4]. 

Proof of Result 2 

Let (X(t), j(t)) be an optimal program from j B 0. Then, there is some 
time period, s, for which w(T(s)) > 0. We claim that if s 2 1, then 
w(C(s - 1)) > 0 also. If not, then w(C(s - 1)) = 0. Choose 0 < 1< 1, with 1 
sufficiently close to 1, so that 

[W(AC(S))/( 1 -/1)“] > &V(E(S)). (6.1) 
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Note that C(s) >O, so AF(s)$O, and so w(AF(s))>O, so that by suitable 
choice of I, the inequality (6.1) can be satisfied. 

Consider a sequence (x’(t), y’(t) ) defined by [x’(t), y’(t)] = [X(t), j( r )] 
for t #s, s- 1; y’(s- l)=j(s- I), y’(s)= [Z(s)+-F(s)]; x’(s- l)=Ay’(s), 
x’(s) = X(s). Note that -v’(s) 2 x’(s), and x’(s - 1) = Ay’(s) d Aj(s) d 
X(s - 1) < j(s - 1) = y’(s - 1). Hence, (x’(t), y’(t)) is a program from y. 
Also, c’(t) = F(t) for t # s, s - 1; c’(s) = E(s), and c’(s - 1) = y’(s - 1) - 
x’(s - 1) = j(s - 1) - Ay’(s) = j(s - 1) - AZ(s) - M?(s) - (1 - 1) A?(s) + 
(I-J)Af?(s) = j(S-l)-L4[Cx(s)+r(s)]+(l-I)Ac(s) = j(s-l)- 
Ajqs) + (1 -A) AZ(s) 3 C(s - 1) + (1 - 1) A?(s) 2 (1 - 1) A?(s). 

Then, w(c’(s- 1)) + Gw(c’(s)) 2 ~((1 -L) A?(s)) + sw(LF(s)) = (1 - Iz)lPy 
w(AF(s)) + 13A’~‘w(P(s)) > (1 - L)[w(AE(s))/( 1 -A)*] + 611 w(C(s)) [since 
A’-“>1 and w(C(s))>O] a(1 -J)Gw(F(s))+G1w(F(s)) [using (6.1)] = 
Gw(C(s)) = w(C(s - 1)) + Gw(C(s)). This shows that [since c’(t) = C(t) for 
t #s, s - 1] (Z(t), j(t)) is not optimal, a contradiction which proves our 
claim. 

In view of this, repeating the above argument for a finite number of 
periods, we can conclude that w(C(0)) > 0. 

Now, we claim that (Z(t), j(t)) is efficient. Otherwise, by Result 1, 

f. A’E(t) <j. 
/=O 

Defining c(0) = C(O) + [j -Cy?, A’?(t)] > C(O), and c(t) = E(t) for t 2 1, we 
note that 

f A’c(t) =j. 
r=0 

So, by Result 1, there is a program (x’(t), y’(r)) from j with c’(t) = c(t) 
for t 20. Now, w(c’(t))= w(c(t))= w(c(t)) for t 3 1, and w(c’(0)) = 
w(c(0)) > w(C(O)), using (A.3) and the facts that c(0) > C(0) and w(E(0)) > 0 
[and sof(Z(0)) > 01. This shows that (X(t), y(t)) is not optimal from J, a 
contradiction. Hence (X(r), j(t)) is efficient. 1 

Proof of Proposition 1 

Given an initial stock, J in R”, , define B= [l/m($)], fi = 
[w(Bjjye)/(1-6j’P”)] andasequence (k(r)) byk(t)=j’(Bfij)efor tg0. 
Note that C,“=. G’w(k(r)) is a convergent geometric series [given (A.4)] 
and clearly 

2 G’w(k(r)) = b. 
t=0 
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Next, let (x(t), y(t)) be a program from j. Then, for t 2 0, 

J?y(t+ l)=@Ay(t+ l)&I@x(t)&y(t) 

so that @y(t) < jr&P for ail t > 0. Thus, for i = 1, . . . . n, vi(t) < R’Bfijj for r 2 0, 
and so y(t)<j’(B@jj)ezk(t) for ta0. Since c(t)<y(t), so c(t)<k(t) and 
w(c( t)) 6 w(k( t)) for t > 0. 

It is, of course, clear that CT=, G’w(c(t)) is bounded above by b and is 
monotonically non-decreasing in T, so it converges, and CyZoG’w(c(f)) Q 8. 

Let (x(t), y(t)) be any program from 7. Then 

f. G’[w(k(t)) - w(c(r))] < f G’w(k(t)) = B. 
r=0 r=O 

So, by using Brock-Gale [2, Lemma 2, p. 2361, there is a program 
(x*(t), y*(t)) from j, such that 

,zo G’L-w(k(t)) - w(c*(t))l G f. G’[w(k(t)) - w((-(t)), 
for every program (x(t), y(t)) from j. This means 

f s’w(c*(t))> ,to stw(c(t)) 

t=0 

for every program (x(t), y(t)) from J. Hence (x*(t), y*(t)) is an optimal 
program from j. 1 

Proof of Proposition 3 

Define the sets G and H as follows: 

G= (a, b) in R x R”: a d f #w(c(t))- f b’w(F(t)), 
I=0 I=0 

b< f Arc(t)- f A’c(t), 
1=0 t=0 

for some program (x(t), y(t))}. (6.2) 

It is worth emphasizing that the program referred to in the definition of G, 
(x(t), y(t)), need not satisfy y(O) =jj(O). 

H={(a,b)inRxR”:a>O,b~O}. (6.3) 



OPTIMALITY IN A CLOSED LINEAR MODEL 303 

Clearly, G and H are non-empty, convex sets, and H has a non-empty 
interior. Also, G and H are disjoint. For if (a, 6) belongs to both G and H, 
then there is some program (x(t), y(t)) such that 

(6.4) 

and 

5 S’w(c(t))> f b’w(F(t)). (6.5) 
t=0 t=O 

Since (X(t), j(t)) is optimal, it is efficient. Hence, by Result 1, 
CEO A7(t)=j, and (6.4) implies that C,“=. Arc(t) ~9. So, by Result 1, 
there is a program (x’(t), y’(t)) from J, with c’(t) = c(t) for t 3 0. In view 
of (6.5), (x(t), v(t)) is then not optimal, a contradiction. This proves that 
G and H are disjoint. 

Using Theorem 3.5 of Nikaido [lo, p. 351, we have (Q, P) in R, x R”, 
such that 

Qa+PbdO for all (a, 6) in G. (6.6) 

We claim now that Q > 0. If not, then Q = 0, and P > 0, and (6.6) implies 
that 

Pb<O for all (a, b) in G. (6.7) 

Define (x(t), v(t) > by y(t) = iv(t), x(t) = Ay(t + 1) for t > 0. Then 
(x(t),y(t)) is a program from [T/2]. Now, by Result 1, C,“=,A’?(t)=J, 
and y$O. So, choosing b=C,“=,A’c(t)-C,“=,A’c(t),,[~/2]~0 and 
a=E:,m_, s’w(c(t)) - zpzo sqc(t)), we note that (a, b) is in G, and Pb > 0, 
contradicting (6.7). Hence Q > 0. Define p = P/Q, and note that p 2 0; also, 
using (6.6) 

a+pbdO for all (a, 6) in G. 

Thus, given any program (x(t), y(t)), we have 

(6.8) 

f S’w(c(t))-p f A’c(t)b f S’w(F(t))-p f A%(t). (6.9) 
t=O I=0 r=o r=O 

Now, given any c in R: , ands>O,defInec(t)=~(t)fort#s,c(t)=cfor 
t = s. Then, there is a program (x’(t), y(t)) from z:,“=. A’c(t), with 
c’(t) = c(t) for t 3 0, by Result 1. Using this in (6.9), we obtain 

Pw(c(s)) -pA”c d GSw(C(s)) -pAY(s). (6.10) 



304 DASGUPTA AND MITRA 

Define p(t) =pA’ for t 2 0. Then (6.10) implies 

srw(c(t))-p(t)c(t)3G’w(c)-p(t)c for all c in R”, (6.11) 

Also, for t>O, we have p(t+ l)F(t+ 1)-p(t)$t)=D(t+ i)j$t+ f)- 
p(t) Aj(t + 1) [since X(t) = Aj(t + 1) by efficiency of (Z(t), j(t))] =O. And, 
for t>O, and any (x,y) in Q, p(t+ l)v--P(t)x<p(t+ l)v-p(t)Ay=O. 
Thus, for t 20, 

jqt+ l)j(t+ 1)-@(t)$t)2$(t+ l)y-P(t)x for all (x, JJ) in Sz. 

(6.12) 

Clearly (6.11), (6.12) show that (X(t), j(t), p(t)) is a competitive program. 
Finally, note that for T> 1, 

=p y(o)+ 1 A’+‘y(t+ l)- 1 
[ 

T- 1 f-l 
A’J?(t)-/IQ(T) 

1x0 1=0 1 =p[j(O)-ATf(T)]. 
Hence, 

p $ AY(t)=pj(O)- lim pA’.?(t) 
r=0 ,-CC 

=pj(O)- ,ltrna p(t) X(t). 

Since C,“=O A’c(t)=j(O) by efficiency, so p C,“=oA’?(t) =pj(O). Hence 
lb,, p(t) X(t) = 0, which proves the proposition. 1 

Remark. It is worth noting that the price sequence ( j$ t) ) will, in fact, 
satisfy p(t) B 0 for t Z 0 (see Lemma 2 below). So the price, p, obtained 
from the separation theorem must satisfy p > 0. 

The proof of Proposition 5 (the existence of a steady-state optimal 
program) requires a sequence of preliminary results which we now discuss. 
First, using the assumption on the utility function [(A.3)], it is easy to 
prove the following result. 

LEMMA 1. (a) Suppose p” is in R”, . Then there exists O”> 0 such that 

w(8e) -p0(8e) > 0 for 0 < 8 < 8’. (6.13 
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(b) Suppose p” and co are in RY+ , respectively. If w(c’) -p”co > 
w(c) -pot for all c in R”, , then w( co) - p”co > 0, w( co) > 0, co > 0. 

Then, using Lemma 1, one can establish that competitive programs are 
“interior” in input-output levels. 

LEMMA 2. Suppose (x(t), y(t), p(t)) is a competitive program from j in 
R”,. Then (i) w(c(t))>O, c(t)>O, x(t))BO, y(t)%>, and p(t)%‘; (ii) 
p(t+l)=p(t)Afort~OandAy(t+l)=x(t)for t>O. 

Proof: The only non-trivial part of (i) is to show that p(t) p 0 for t > 0. 
Using (2.1) we have for t>O, i=l,...,n, s’w(c(t))-p(t)c(t)a 
s’w(c(t) + e’) -p(t)(c(t) + e’). Hence, for i= 1, . . . . n, t 20, pi(t) =p(t) e’> 
s’[w(c(t)+e’)- w(c(t))]. Since w(c(t))>O, we have f(c(t))>O and by 
(A.3) (c), f(c(t)+e’)>f(c(t)). Therefore, w(c(t)+ e’) > w(c(t)), and 
p,(t) ’ 0. 

Part (ii) follows from Result 3(iii) and 3(iv), and (2.2), since y(t) $0 and 
p(t) % 0 for t > 0 by part (i) above. 1 

Lemma 2 in turn yields the result that positive scalar multiples of com- 
petitive programs are also competitive programs. 

LEMMA 3. (a) Zf co in R”, and p” in R”, are such that, w(c”) -p”co > 
w(c))-pot for all c in R”,, then for any B>O, w(/%“)-~po(/%o)~ 
w(c) - jJp”c for all c in R”, , where fi z [~//II”“]. 

lb) If <x(t), y(t), p(t)) IS a competitive progam from J with con- 
sumption sequence (c(t)>, then for any /?>O, (px(t), By(t), BP”p(t)) is a 
competitive program from pjj, with consumption sequence (/3c(t)). 

Proof. Suppose co and p” are in R”, and w(c”) -p”co >/ w(c) - pot for all 
tin R”,. Consider any p > 0 and any c in R: . Then 

w(j7c”)-~p”(~c0)=~~[w(c0)-p0c0] 

2 pBcw(c/B) -P”(ClB)l = w(c) - BPOC. 

This proves (a). To prove (b), note that by Lemma 2, x(t) = Ay( t + 1) for 
t 2 0. Hence, /?x( t) = @y( t + 1). Since 0 < c(t) = y( t) - x(t) for t 3 0, 
therefore, 0 G bc( t) = By(t) - Bx( t) for t 2 0. Hence, @x(t), fly(t)) is a 
program with consumption sequence (/k-(t)). To see that (/?x(t), by(t), 
B-“p(t)) is competitive, we note that clearly j-*p(t) 2 0, and 
w(pc(t)) -b-“p(t)(/?c(t))> w(c)-fi-“p(t) c for any c in R”, , by part (a) 
above. We need to show that fi-“p(t+ 1) (/?y(t+ 1))-fi-“p(t)(bx(t))>, 
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oh’s,’ + 1) y - BP”p(t) x for any (x, y) in 0, t > 0. This follows from (2.2); 
2 

p(c+ l).Jdt+ l)-P(~)x(~)ap(t+ l)y-p(t)x for all (x, y) in Q t > 0, 

which in turn implies that for any (x, y) in s2, and t 3 0, 

B-“P(t+l)By(t+l)-p-“P(t)Bx(t) 

>P--“LJ(t+ l)P(ylP)-p-~PP(t)D(x/B) 

[ 
since(x,~)isinQimplies(~x,~~)isinQ] 

=pp(t+ l)Y-PpXP(t)x 

which completes the proof. 1 

Using Lemma 3 now yields the existence result on a steady-state optimal 
program (Proposition 5) which we now prove. 

Proof of Proposition 5 

We first define a set 

S = {c in R”, : 11 c II < [w(e)/m(@)] lia}. 

We note that for c in R”, , c not in S, we have 

w(c) -DC < 0. (6.14) 

To see this note that for c not in S, 

w(c) -DC= II clK{4cMl CII > - {acill CII >I 

G ll~llc~~c~/ll~ll,/ll~ll~>-~~B~l 

6 II c II Cw(e)/ll c/Ix - m(b)1 

= IIcII’-a 4B)Cw(eYm(B)- Ilcll~l 

< 0, since II c II > [ w(e)/m( p)] I”. 

We also note that, by Lemma 1, there exists 0’ such that 

w(8’e) -p(e’e) > 0 and 0 < 8’ < [w(e)/11 fi )I]““/n. (6.15) 

Now, S is a non-empty, compact set in R”, , and the function, 
F(c) F w(c) -DC for c in R”, , is continuous on S. So, there is c* in S, such 
that 

w(c*) -PC’ > w(c) -pc for all c in S. (6.16) 
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Let c’ = 19’e. Then 11 c’ 11 = &’ < [ w(e)/11 b II] “’ ,< [w(e)/m(d) J ‘Ia, so c’ is in 
S. Using this in (6.16), we have w(c*) -DC* 2 w(c’) --PC’> 0 [by (6.15)]. 
This also implies c* > 0, by Remark 1 in Section 2b. Since for c not in S, 
w(c) -cc < 0, so by (6.16) 

w(c*) -pc* 3 w(c) -pc for all c in R: . (6.17) 

Define g = (SK) I”, and note that by (A.4) we have 

(6.18) 

so that, by the Frobenius theorem, we have (I-gA) is non-singular 
(invertible), and (I-gA)-‘%O (Nikaido [lo, p. 102 and p. 1071). Define 

y* = c*(z-gA)-1. (6.19) 

Now, define the sequence (x*(t), y*(t)) from y* by y*(O)= 
y*,y*(t+ l)=gy*(t) for t>O; x*(t)=Ay*(t+ 1) for r>O. Note, then, 
that (x*(t), y*(t + 1)) is in !I2 for t>O. Also y*(t)+x*(t) = 
y*(t)-Ay*(t+l)=g’y*-Ag’+‘y*=g’[Z-gA]y*=c*g’[by(6.19)]~0. 
Hence (x*(t), y*(t)) is a program from y*, and c*(t) = c*g’ for t>O is the 
corresponding consumption sequence. Note that c* > 0, (I- gA ) - ’ $0 
implies that y* $0 and hence x* B 0. 

Clearly, (x*(f), y*(t)) is a steady-state program. Our next task is to 
show that it is also an optimal program. To this end, define 

p*(t) = [$/Xq for t ZO. (6.20) 

We will now show that for t L 0, 

(i) a’w(c*(t)) -p*(t) c*(t) b #w(c)-p*(t) c for all c in R", 
(ii) O=p*(t+ l)y*(t+ l)-p*(t)x*(t)>p*(t+ l)y-fix for all 

(x, y) in Q. 

To establish (i), note that by (6.17) and Lemma 3(a) we have 

w(g’c*)- (ll(g’)“)~(g’c*)~w(c)-(ll(g’)“)ac for all c in R", , t 2 0. 

Therefore, using g” = Sj and c*(t) = g’c* for t 2 0, 

w(c*(t))- (l/cYl’)gc*(t)> w(c) - (l/s’R’)pc for all c in R: , t 2 0, 

which is (i). 
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To establish (ii) note that for t 20, ~*(t+ 1)-p*(t) A = (l/R”‘) 
(J? - +A) = 0. Therefore, for any (x, y) in Q and t 2 0 we have 

p*(t+ l)y-p*(t)x<p*(t+ l)y-P*(t)Ay=O 

=p*(t+ l)y*(t+ l)-p*(t)Ay*(t+ 1) 

=p*(t+ l)y*(t+ l)-p*(t)x*(t). 

Finally, note that p*(t) y*(t) = (b/Jr) y*g’=fiy* (g/j)‘. Since 0 < 
(g/j) < 1 [by (6.18)], so p*(t) y*(t) + 0 as t + 00; that is, the transversality 
condition is satisfied. Hence (x*(t), y*(t)) is optimal from y* by 
Proposition 1. Since it is a steady-state program, so it is a steady-state 
optimal program. [ 

The proof of Proposition 6 (the turnpike property of optimal programs) 
requires several preliminary results, which we now discuss. First, using 
Lemma 3 above, it is easy to prove the following result. 

LEMMA 4. Suppose (x(t), y(t), p(t)) is a competitive program from j in 
R”,, Then 

(i) w(c(f)/g’)-K’p(t)(c(t)/g’)>,w(c)-j’p(t)cfor all c in R”,, t20; 
and 

(ii) w(c(t)/g’)-l’p(t)(c(t)/g’)>O for t>O. 

The additional assumption on the welfare function [(A.5)] effectively 
makes it strictly concave everywhere in the part of the domain of w  which 
is of interest, namely where w(c) > 0. This is what the following Lemma 
establishes. 

LEMMA 5. Under (A.3) and (A.5), if co, c’ are in R”, , c”# c’, 
w(c’)>O<w(c”), andO<e< 1, then 

w(8c0+ (1 - e) c’) > Bw(cO) + (1 - 0) w(2). 

Proof. If co is not proportional to cl, then, 

w(ecO+(l-O)c’) 

= [ f(&“+ (1 -e) ci)]l--1 

2 [ef(co)+(i -e)f(c~)-p [Iby W5)l 

~e(f(co))l-a+(i-e)(f(c*))'~" 
[since x ’ - a is concave for x 2 0] 

= ew(co) + (1 -e) W(C* 1. 
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If co is proportional to cl, then there exists p # 0 such that co = pcl. Since 
co, c’ are in R”, , therefore, p > 0. Since co # cl, therefore, p # 1. Therefore, 

w(ec”+(1-8)c~) 

=w((Op+ 1-0)c’) 

=(@+ 1 -Q-a w(c,) 

> [@pi-“+(1-O) l’P”] w(c,) 

[since, x ’ -’ is a strictly concave function of x > 0, 

~#l,~~OandO<#<1] 

=QP’w(c’)+(l-0) w(c’) 

=@w(/K’)+(l -@w(c’) 

= ew(cO) + (1 -e) w(2). 

This establishes the lemma. 1 

Since the welfare function is strictly concave in the relevant domain, 
therefore, convergence of the supporting prices of a sequence of con- 
sumption points to that of a given point implies the convergence of the 
sequence of consumption points to the given point. This is the content of 
the following lemma. 

LEMMA 6. Under (A.3) and (AS), if (p”), (c’) are sequences in R”+, p 
and C are in R”, and 

(i) lim, ,-.,XP’=p 
(ii) w(Y) -pScS > k(cJ -pScfor all c in R”, , for each s > 0, 

(iii) w(E)-@>w(c)-@for all c in R$, 

then lim, _ 13c cs = C. 

Proof: First note that, by Lemma l(b), (ii) and (iii), respectively, imply 
that 

w(P) > 0 for $20; and w(C) > 0. (6.21) 

Now, suppose the lemma is false. Then, without any loss of generality, we 
may suppose that there exists so > 0 such that 

IIc”-C/J >Eo for sZ0 

and [by virtue of the continuity of w  and (6.21) above] that 

w(c) > 0, for c in R”, Satkfying )I c - F 11 < Ed. 

(6.22) 

(6.23) 



310 DASGUPTA AND MITRA 

Let B = {c in R”, : I]c-EI] =Q,}. Clearly B is compact. Consider any c in 
B. Then by Lemma 5, we have 

w((T/2) + (c/2)) > $(w(F) + w(c)) 

[since c # C and W(C) > 0, 0 < w(C) and, therefore, Lemma 5 applies]. 
Therefore, 2[w((?/2) + (c/2)) - w(C)] - [w(c) - w(C)] >O for c in B. Since 
B is compact and w  is continuous, therefore, there exists .sl > 0 such that 

2[w((~/2)+(c/2))-w(C)]- [W(C)-W(C)l>E’ for c in B. (6.24) 

Now, consider any s 2 0. Since 11 cs - C 11 > Q,, therefore, there exist A1 > 1 
and c’ in B such that (1/1’)~~+(1-(1/12~))C=c~. Since w(c’)>O, 
w(C)>O, c”#C, and O< (l/n’)< 1, therefore, by Lemma 5, w(c’)> 
(l/n’) w(P) + (1 - (l/J’)) w(C). Since 1’ > 0, therefore, ,I’[w(c’) - w(C)] > 
w(P) - w(C). Therefore, 

(A’ - l)[w(c’) - w(C)] > w(P) - w(c’). (6.25) 

Now, from (ii), substituting c1 for c, we obtain 

w(2)-p”c’ < w(cS) -pY= w(Y) -p”[/W + (1 -A’) E] 

= w(Y) -psc - Pp”(c’ - 2). 

Therefore, 

(2’ - l)p”(c’ -c) Q w(?)- w(c’) < (2’ - l)[w(c’) - w(C)] [from (6.251. 

Since A’ - 1 > 0, therefore, 

pyc’ -C) < w(2) - w(C). (6.26) 

Also, from (iii), substituting [(F/2) + (c’/2)] for c, we obtain 

W(+~E~w((q2)+(c1/2))-p((~/2)+(c’/2)). 

Hence, 

p(c’ -C) 2 2[w((C/2)+ (c’/2))- w(C)]. (6.27) 

From (6.26) and (6.27) we obtain 

(Is-p”)(c’ -2) > 2[w((f/2) + (c’/2)) - w(C)] - [w(c’) - w(C)] 

>E, [from (6.24), since c1 is in B]. 
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Therefore, O<E, 6 Ijp--p’II llc’-C/l = IIP-psI/so. Hence, for s>O, 
I/ p -@‘I/ > E,/E~ > 0. This contradicts (i) and, therefore, completes the 
proof of the lemma. 1 

Lemma 6 now helps us to establish the turnpike property of optimal 
programs (Proposition 6) under the maintained assumptions (A.1 b(A.5). 

Proof of Proposition 6 

Since (Z(t), j(t)) is an optimal program from j $0, there is (by 
Proposition 3) a sequence (p(t)) such that (f(t), j(t), p(t)) is a com- 
petitive program. 

By Lemma 2, [X(t), j(t), w(F(t)), p(t)] $0 for t > 0, and also for t > 0 

O=jY(t+ l)-p(t)A for t>O. (6.28) 

From (6.28) it follows that 

1$(t) =P(O) 2,’ for t>O. (6.29) 

Now, A’A converges to a matrix A, such that a, =p, j; (Karlin [7, p, 2491) 
for i = 1, . . . . n;j= 1, . . . . n. Thus, we have 

mt) -+ cm) 91 a as t+co. (6.30) 

Define p= l/[p(O)G]““, and a sequence (x’(t),y’(t)) by y’(t)=py*(t), 
x’(t)=px*(t) for t 20, where (x*(t), y*(t)) is the steady-state optimal 
program of Proposition 5. Also, define (p’(t)) by p’(t) = pup*(t) for t 2 0 
and (c’(t)) by c’(t)=pc*(t) for t>O, where c*(t) is the consumption 
sequence associated with (x*(t), y*(t)) and (p*(t)) is the corresponding 
sequence of present value prices. Now (x*(t), y*(t), p*(t)) is competi- 
tive, and p > 0 since p(0) $0 by Lemma 2. Therefore, by Lemma 3(b), 
(x’( t ), y’( t ), p’(t) ) is competitive. Moreover, lim, _ m p’( t ) x’(t) = 
lim f+uD pl-“p*(t)x*(t)=O. Hence (x’(t),y’(t)) is optimal. Clearly it is a 
steady-state program with consumption sequence (c’(t)). Therefore 
(x’(t), y’(t)) is a steady-state optimal program. This establishes (i). 

Now, p’(0) = p-“p*(O) = [p(O) j] fi. Therefore, from (6.30), we have 

1$(t) -+p’(O) as t-+co. (6.31) 

Since (x’(t), y’(t), p’(t)) is competitive, we have 

w(c’(0)) -p’(O) c’(0) 2 w(c) -p’(O) c for all c in R”, . (6.32) 

Since (Z(t), j(t), jj( t)) is competitive, Lemma 4 yields 

w(F(t)/g’) - Qqt)(c(t)/g’) 2 w(c) - I’jqt) c forallcin R”,, t>O. (6.33) 

612!45,‘2-7 
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By virtue of (6.31) (6.32), and (6.33) we may appeal to Lemma 6 and 
conclude that 

lim (?(t)/g’) = c’(0). (6.34) 
I - ,xi 

Now, in view of the “principle of optimahty,” for sz 0, we have 
(X(t + s), j(t + s)) is optimal from j(s). So, for s > 0, we have (X(t + s), 
j( t + s) ) is efficient from j(s). Hence, using Result 1, we have, for s > 0, 

j(s) = f A’?(s+ t) = f g’A’[E(s+ t)/g’]. 
I=0 r=0 

So, we obtain for s > 0, 

[j(s)/g"] = f g'A'[c(s+ t)/g'+"]. 

I=0 

For the steady-state optimal program (x’(t), y’(t)), we have 

y’(O)=py*=p(z-gA)-%*=(I-g/4-b’(0)= f g’A’c’(0). 
t=O 

So, we obtain, for s > 0, 

c{m)/g”~ -Y’(O)1 = f h‘e-{~(s+ tw+3 
t=0 

} -c’(O)]. (6.35 ) 

Now, given any E > 0, there is, by (6.34), a positive integer N*, such that 
N 2 N* implies II{ c(N)/gN} - c’(O)11 6 E. Using this in (6.35), we have for 
S2N* 

[{Y(s)/g’~ -Y’(O)1 GE f g’A’e=E(Z-ggA)-‘e [since gA 2 01. (6.36) 
1=0 

Similarly, by (6.35), for s> N*, 

C{Y(s)/g”~ -Y’(O)1 2 --E f g’A’e= -&(I--gA)-’ f. (6.37) 
/=O 

Thus, for s 2 N*, 

II{Y(~W}-Y’(O)~~ GE IIU-d-‘ell (6.38) 

which proves that { y(s)/g”} + y’(O) as s + co. This establishes (ii). 1 



OPTIMALITY IN A CLOSED LINEAR MODEL 313 

Proof of Theorem 1 

We will show that (5.1) implies 

lim infp(t)y(t) =0 (6.39) 
r+nc 

so that the optimality of (Z(t), y(t)) then follows by Proposition 1. 
To this end, our first objective is to show that 

P(O)j >/.?j. (6.40) 

We start by noting that if y is in Y, then w(c*) - w(y/e) >@c* -@(-y/Q) 
[using (6.17)] =0 [using the definition of Y]. So w(c*)> w(y/8) = 
w(,v)/B1-’ and so 8’-“w(c*)>w(y). Define a=8’-“, and [(l/a”)- I] =h. 
Note that since 0<8< 1, so O<a< 1, and b>O. Since y(O) is in Y, 
therefore, aw(c*) > w(y(0)). 

Now, since (Z(t), y(t)) is competitive w(T(0) +a /Ic* 11 e)- w(E(0)) 
<p(O) u I/c* II e = a /I c* ]I 11 p(O)l]. Also, using the fact that C(0) <y(O), and 
so w(C(O))<w(j(O)), we have w(F(O)+u IIc*Il e)-w(F(O))aw(u IIc*Il e)- 
w(j(0)) B w(uc*)-uw(c*)=&%(c*)-uw(c*)=u[(1/u*)- l] w(c*) = 
ah w(c*). Using the above two results, we conclude that 

II P(O)ll b wc*)/ll c* II. (6.41) 

This yields p(0)33m(~)~(O)e=m(~)ll p(O)11 >,m(~)hw(c*)/llc* II > 
m(Q) @c*/]l c* II [using (6.15) and (6.17)] am(j) b$j/E ]I c* )I (using the 
definition of E). Summarizing these inequalities, we have 

(6.42) 

Using the definition of 8, V-z) = q/[r] + 11, so that we have 
cm “‘~“‘]=l+(l/~). This means that ([l/~‘c’~z)]-l} v]=l; or, using 
the notation a = e’--I, and [(l/u”) - 1 ] = b, we have bq = 1. Using this last 
piece of information in (6.42) yields (6.40). 

Now, suppose, contrary to (6.39), that lim inf, _ co p(t) jj( t) > 0. Then, 
there is ,u > 0, and an integer T, k 0, such that t B T, implies 

At) j(f) 2 P. (6.43) 

Since (Z(t), y(t), p(t)) is competitive, therefore, by Lemma 2, we have 

p(t+ l)=F(f)A for tZ0. (6.44) 

Using (6.44), we note that for t30, 

X’+‘p(r+ l)P=fi’+‘P(t)A~=E:~(t)~ 
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and so we have 

2p(t)p=p(O)J? (6.45) 

Similarly, using (6.20), we have 

i@*(t) j =pJY (6.46) 

Denoting [p(O) j - fij] by E, and noting by (6.40) that E > 0, we have, by 
(6.45) and (6.46), 

l’[p(t) -p*(t)] 3 = ‘5. (6.47) 

Now, in view of (6.44), we know that 

&T(t) =jqO) E:‘A’ for t30. (6.48) 

Since fi’A’ converges to a matrix 2, such that ti, =@, jj (Karlin [7, 
p, 249]), we have 

m) + CD(O) PI 6 as t-co. (6.49) 

On the other hand, i’p*(t) =@; so, using $i, = 1 we can write 

Alp*(t) = [@Cl p for t>O. (6.50) 

Combining (6.49) and (6.50), we can find T, > T,, such that 

mu) -P*(t)1 a t&/2)/3 for t> T,. (6.51) 

Now y*(t) =y*g’ for t 2 0, where 0 <g < R. So, in view of (6.49), (6.50), we 
certainly have [p(t) -p*(t)] y*(t) + 0 as t + co. Defining v = [p~/Sp(O)j] 
we can find T3 > T,, such that 

CD(t) -P*(t)1 Y*(t) d v for t> T,. (6.52) 

Using this in (5.2) we have for t > T, 

CD(t) -p*(t)1 j(t) G v. (6.53) 

Combining this with (6.51) yields 

(E/2) $jqt)/R’ Q v for t>T,. (6.54) 

Relying on (6.49) again, we can find T, > T,, such that t 2 T, implies 

@(t) < 2[P(O) i] fi. (6.55) 
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Using this in (6.54), we have, for t 2 T,, 

p(t)y(t)<2Cp(0)~1~~(t)lRf< {4P(W/&} “=(PP), (6.56) 

which contradicts (6.43) and establishes (6.39), and hence the theorem. 1 
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